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The problem of feedback-implementable optimal control, on condition that an integral quality index takes a 

minimax value [l-7], is solved by mixed strategies. An effective procedure is proposed for evaluating the 

value of the game and for constructing optimal strategies, based on the idea of stochastic programmed 

synthesis [l, 7]. An essential element of the procedure is the reduction of multidimensional auxiliary 

problems to the maximization or minimization of functions whose arguments are of dimensions not 

exceeding that of the controlled system. 

1. STATEMENT OF THE PROBLEM 

CONSIDER an object described by the differential equation 

z’-A(t)z+f(t, U, V), t”<K%O 
(1.1) 

x=R”, UEW&P, v=W,dP 

where W, and W,, are compact sets, A (t) is a matrix-valued function andf(t, u, v) is a vector-valued 
function, both piecewise continuous in t. Times t,@l, seminorms IJ,*~~~(x) (i = 1, . . . , N,), tLN’l = if 
and a seminorm-function j.~,* (t, x), piecewise continuous in t, are defined over the interval [to, I?]. 
(Such functions are assumed to be right continuous.) Suppose a set of integers .tiJ = u[t,fil] E [l, n] 
and constant (#J x n)-matrices D,ti] are given. The seminorm p,fil(x[t,[il]) is defined as a certain 
norm t.r,*fij(D *fiix[t,tiJ]), (i = 1, . . . , TV,). Similarly, t.~,(t,~) is defined as a norm-function 
~(f, D, (t)x) which is piecewise continuous in t, where D, (t) is a piecewise constant matrix-valued 
functionoforder(u[t]xn),v[t]E[l,n], t,<tS6. 

The problem is to determine controls u and v which, respectively, minimize and maximize a 
quality index 

Q N 

v = \ P fh & @)z PI) dt + 2 
p[il ($I 5 It:] J), t, E [to,. 6) (1.2) 

k i=g* 

where t, is the starting time of the control process and t,tg*l is the least of the time t,fii 3t,. The 
problem will be solved in the class of mixed positional strategies [7] 

S”=(L/‘,(*), py(*); Uv*(*), Ptl*(‘); ~“*(*I* %*(*)I (1.3) 

~={K(*), q*(*); W(*), p.W; W.), ql+f*)} (1.4) 

U( *)-{rj-(tJ)={Ut’rEw”, r=l, , . . , L,}, e>O} 

v(.)=(Y(e)t(uI*l~WWs, s-l, . . . . M,}, e>O) 
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PJ*) = {P, = PAt,=_,!P)>0, 

q*(.)={q,=q.(1,s.z,e)~O, 

(E>O is an accuracy parameter [l]). The control scheme is such that, together with the x-object 
(l.l), one also considers y, a pilot model installed in the control organ Ii,,, and z, a pilot model 
installed in the control system R,, . Underlying the construction of the motions of the x [ -j-object and 
the y [ *]-model is a certain probability space {Q, , F,, P,} which is constructed on the basis of the 
functions p_” ( - ), qz(. ) in (1.3) and the properties of random interference 

V( *] =(u[ t, O]EW,, t*<tGI, o&82*} (1.5) 

For an initial position {t*, x*, y,}, a given value of E>O, a partition A{t,} = {t, = t,, tj<ti,i, 
tk_+ , = 6) and a certain interference v [ *] as in (1 S), the strategy S” of (1.3) will generate motions 
x [ -1 and y [ -1 as solutions of stepwise differential equations 

z’ft, @]=A(t)~fr, at+f(t* u[tiv 01, VIt, 01) 

tiKt<ti+*, i=I, . . . , k, s[t*, tt) )I--S* (1.6) 

I.,, hi, 

~‘[~,~]==A(~)y[~,o]+ >= f&u frft Of*]) Pr* (ti$ Z [ti, a], j/ [h, 01, E) X 
r, s=l 

x qr* (k z [b g,. Y [b 019 e) (1.7) 

The function u[ti , o] in (1.6) is a sample function of the random variable u [ti , -1 such that 

P(u[ti, OjeUrrlIZ[ti* 01, J/[ti, O])= 

=Pr(tis x[tt, 01, pIti* 01, E), U”‘EU(E) 

where P(..-/...) is the conditional probability. It is assumed that the noise is stochastically 
independent of the control at each step, i.e., 

Throughout this paper “Idem” on the right of an equality will stand for an expression that is 
identical with the left-hand side except for the substitution of symbols indicated in the parentheses. 

The guaranteed result is defined to be 

p (S”, t,, a,) I- lint lim lim aup lim siipsup(mina) 
8-t e-+0 r-0 Ix*---v*i<: 44 A& u 1.1 

where fy satisfies the condition 

P(-+HKCtG+ 

A strategy So(I is optimal if 

(1.8) 

p (S”, t,, x+) = nlin p (S”, t,, x+) = puo (t*, ~4 (1.9) 
s” 

for any position {t,, x,}. The quantity pu”( .) is the optimal guaranteed result. Similarly one defines 
p(S”, t,, x,) and optimal &I and p,,“(t,, x,): 

p (Sot, t,. x*) -- rn;x p (S”, t,, z+) = PvO (t*. x*) 
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The quality index y of (1.2) is positional, and it can be shown that the differential game for the 
object (1.1) with quality index (1.2) has a payoff p”( .) = pU”( *) = p,“( *) and saddle point fSOLL, So”}. 

The optimal strategies SoU (1.3)) (1.9) and Soy (1.4)) (1.10) are built up constructively on the basis 
of the known payoff function @(E, X) of the game by the method of extremal shift to satellite points 
[6]. The purpose of this paper is to describe an effective construction for the payoff of the game and 
the optimal strategies, based on the idea of stochastic programmed synthesis [I, 71. 

2. STOCHASTIC PROGRAMMED MAXIMIN 

We denote a partition A{T,[~)) of the interval ito, 81: r,[l) = to, ~,~~+‘l>~,@l, 7*f”] = 6, also 
including in it all the points tj” that separate the intervals in which II,(t) is constant. Define 

$1 

c1 (z* 
1111, D (zrM )z) = 5 I(% D, (T)S)dT 

+-II 
* 

We will dwell only on the values of r,th) at which E*.(T*~~), ZJ(+r, @-‘)).x) f 0. Combining the times 

thfi), r*ih) we renumber them in increasing order and denote them by tlil, i = 1, . . . , IV. Define 

To simplify the notation we shall assume that the combined times are all distinct. Otherwise certain 
obvious changes must be made in the constructions described below, due to the double allowance 
for p at timds tlil = ?*[*I = t*!J. 

Let w be the model described by the equation 
1.n. ‘Url 

w’ = A (1) w + c f (t, u[‘J, lit‘)) prqg (2.1) 
r, a=1 

where 
% % 

p,>O,&=l, f&,>O,J&=~ (2*2> 
+=1 S==S. 

urr&ull= + rrr=?V,, r=i, . . . , L,) 

d’k v ,I={vg”=Wvr s==l, . . . , M,) 

The set U, has the property that for any u E IV, there exists ~(“1 E U, , 1 &l- u [ ST. Similarly, V, 
is a set such that for any v E W,, there exists vlSIE V, , 1 vfsl- v 1 STJ. Let {r*, w,} be the starting 
position for the stochastic model (2.1). 

We denote another partition 

A=J (rjj ={ rt=r*+ rj(~i+r, rl i (=V)f (2.3) 

which, besides the previous points, also includes all times &i) a~,. Let t(g) be the least of the times 
6’) 37,. The model (2.1) is based on a probability space [8] {a, B, P} in which the elementary 
events are w = {<r, . . . , t&} , where $E [O, I] are uniformly distributed independent random 
variables associated with Tj. Here Q = {o) is the unit cube in k-space, B is a Bore1 o-algebra for the 
cube and P = P(B,) is a Lebesque measure, B, f B. We introduce v ‘ii-dimensional vector-valued 
random variables E(‘)(t[‘) w) defined on {a, B, P}, where ~(~1 E [ 1, n ] is defined by the order of the 
matrix D[‘l corresponding to the time &‘I, so that ,fi) is the number of rows of #l. Combining all 
the random variables I(‘)(. ), we get a multidimensional random variable I( .). Define 

[I 1(.) 11 ‘= max vrai max @iI* (Z(i) (N, w)) 
i 0 
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where t.~t’t*(l) is the norm dual to t.~t’j(l). Let x(t, 7) denote a fundamental matrix for dxldt 
= A(t)x, M{-..} and M { + * - 1. . .} the expectation and conditional expectation, respectively and 
(a. b) = a% the scalar product of the vectors a and b. Throughout what follows, lower-case Latin 
letters wili denote column vectors and the superscript T transposition, so that aT is a row vector. 

Our main result is the following procedure and a proof of its validity. It can be verified that 

p” (T+, we) -5 ,irz_, e (T*, IX+, A, 11) (2.4) 

6 zz ntax [(ti+t - Zj), 

j. h 

(T(:l+” - TF’)] 

where n is a number defming sets U, and V, of vectors II “1 and r~t.‘t distributed fairly densely in the 
compact sets W, and W, and p”(e) is the payoff of the game (1.9), (1.10). The quantity e(.) is 
defined by 

where d(j) = min(i) such that ttil 3 TV+, , h = g if 7, <ttgj, otherwise h = &J + 1. 

Putting 

we obtain 

e (r*, we1 A, q) = max [m*‘w, + x (t*, m,, A, q)] 
118 

(2.5) 

(2.6) 

k ritl 

' x(t,,m,, A,q) = max M 
ll~(~)licl Es j=* ~~ 

Ltl. bf ,, 

x ( c f* (t, Zff’J, vtq p,gr)dr) \ m, = &z(i) (2.7) 
,. &=I i=., 

where m, is a constituent of m”; the minimax is evaluated over all arguments satisfying conditions 
(2.2). 

To evaluate x( m), one can develop and justify a procedure [7j that uses induction on j to construct 
the upward convex envelopes ~j”f(,) for certain functions $(Rz) of the appropriate conditional 
expectations rn. We define 

~pk:l (m) = 0, A$k (n)= 1 (tkl r/i+11 m) = 

%+I 
l 

zz2 
!I 

~~,inm~x [mT”x fS (z, ufrj, utsr) Ptgl 1 ~lr 

‘lr r, 1-z‘ 

*k(m) =A%(m) 
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If we define mN = D ~~~~~~(~)(f~~~ w) then, using the total probability formula, we see that for 3 3 
each conditional expectation 

mk=f~~jDiNl’l(l)(tlNll 0) [E,, . . *, ER-,} 

we must maximize M{A+k(mN) 1.5, . . . , t$_1 }. This maximum value is by definitioti the value of 
the upward convex envelope cpk(rnk) of Jlk(-) at the point mk for the domain P’~‘*(Q)< I. We 
therefore define cpktN) (m) = J~~O( .) for m E Gk , where (J” denotes the upward convex envelope of JI 
in the appropriate domain. We have 

G,=fm : prNf*(m)Si}. 

Suppose that ‘p,$l) and Gj+,.have already been constructed; we then have i + 1 >g, T;+ I < t” + ‘I. 
We begin with the case li+i >tl’l, defining Gj = Gj+ 1, 

hgj(m)=Z(Tj, yj+s, m), $j(m)=A@j(m)+ 
+~~~~‘(m), ~j”+“(m)=~j”(*)~ m=Gi 

Consider the case T.+~ = for m”=m,+m, 
7. 

tliJ. Then $j(m*) = max[A$j(m*) +q/::‘) (m,)] 
m,EG;+,,m=X (t h, $)DI’I’/, $iJ*(f)<1. 

The domain Gj is the set of all such vectors. Then q(‘)(m) = +y( *) for m E Gj. The proof that this 
induction step is valid, as in the case j = k, is based on maximization of the appropriate conditional 
expectation of +(a). The construction continues until the time 7l = 7*, when two cases may occur. 

In the first case ?.+ = @I. We then obtain a domain Gi(gt and a function cpi(K)(m) for rrz E G,(g) 
which determines X( .) (2.7) so that 

X(X*, w*, A, 7) =qP( m), m=G’“’ (2.8) 

In the second case 7, = tlgl. We then obtain a domain Gi@‘) and a function (p,(@‘)(m) such that 

x(z+, w*, A, q) =rp,(S+‘)( m), rn=G’“+‘) (2.9) 

In the first case we have m* = m, E GI (s) in (2.6). In the second case m” = m, +m, where 
m, E G,fg+‘), m = XT(7,, a)Dlgj”f, (all)*< 1. 

3. CONSTRUCTION OF OPTIMAL STRATEGIES 

To construct SC? as in (1.9) we have to define the functions 

U,“(*), uV*(*), v#*(*), Pyo(.), p,*Y) 

and qY*O(.) of (1.3). The sets Uy”(&), V,,*“(E) and functions p,“(t, X, y, E), c&*“(t, x, yt F) are 
determined by certain conditions [7, p. 1881 which guarantee that the motions (1.6) of the object and 
(1.7) of the pilot model will be close together..Indeed, the sets of numbers 

prO=pro(r*, x*, Y*, a) and Q~*~==Q..*~(~*, x*, y*, E) 

are chosen subject to the conditions 

=rl* % 
7 max 

P z 
r, s=1 

((z+ - y,)-f (t*, drl, t.Dl) p/qJ = nrjn Idem (p” * p) 

Lq. “q 

min 
.L l ((x* - y,J f (t+, utrl, 0) P~Q,*~) = max Idcm (q*” -> q) 

P r. s=z Q 

(3.1) 

(3.2) 

on the assumption that relations (2.2) hold with q = q(~). 
We define U>,“(E) = U_,,*“(E) = U-rl(ejf Vy*“(~) = Vq(FJ, where U,,(F) and V7iej are the sets of vectors 

(~1~)) and {vl”l} are in (2.1), (3.1) and (3.2). 
It remains to define the function 
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pv*‘( *) = (p*‘(t, 5, Y,.E) = {Pr*’ > 0, z &*’ = i)} 
r-1 

Relying on (2.4)-(2.9), we construct 

(3.3) 

(3.4) 

The maximum in (3.4) is evaluated over the vectors m* in the domain defined at the end of Sec. 2. 
Using the convexity of x(7,, m, A, 71) as a function of m, one can show that the vector rn*‘(T*, y,, E) 

is uniquely defined by (3.4). 
The optimal set pr*” of (3.3) is defined by 

r.n. M1 
m;x (Xr (G, T*) m*” (T,, y,, fz) C f (t*, u[‘*, v(‘Q p,*-q,) = 

+,1=x 
r: min Idern (p+’ -+ p) (3.5) 

i’ 

This completes the construction of SC;. 
The optimal strategy So” of (1.4), (1.10) . IS constructed in a similar way; the necessary changes in 

(3.1), (3.2) are to replace y by z, interchange p and q and replace the minus sign in (3.4) by a plus. 
The optimal set qs*O = qs*‘(T,, x*, z,, E) is defined by 

Lrl, Mtl 

mim < XT (6, f*)m,,*’ 
7) c 

f, r=1 

f (T,, 0, uf*l) pry,*‘) = mzx Idem (Q+‘-+(I) (3.4) 

where m,, *O is a maximizing vector. Unlike (3.4), the function p,?(~*, z,) may not be convex, so the 
vector f~z,,*O is not unique. We must therefore take one of the maximizing vectors m,,*“. 

4. EXAMPLE 

We will illustrate the computation of the payoff p’(t*, x*) (2.4) of the game by the following example: let the 
equation of motion of the object (1.1) be 

d~k/d~~=a(t)u+b(l)(u+v)*+c(f)u=F(t, u, v) (4.1) 

where h is a scalar, a(t), b(t) and c(t) piecewise continuous functions trE W, = {u: ul’l = -1, uEzJ = I}, 
VE w, = {v: v Ill = -1, vl4 = I}. 

The quality criterion y of (1.2) is 

7” 1 k[tt’l] 1 + 1 k[+] 1, f[‘lfclfto, 8) (4.2) 

Equation (4.1) may be reduced to normal form: 

z’=Az+#, (I, u) (4.3) 
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Then, by (1.2) we have 

~=ll)zft’~Jf~+~~~lt’2’lt (4.4) 

D=lit 011, ffPJ=f). 

We introduce the scalars I(j), i = 1, 2, If(‘)lCl, pr = P(u = u”]), r = 1, 2, qs = P(v = v”‘), s = 1, 2; P(...) 
denotes probability. Define the vectors 

mtil=X+(fj, rlfJ)Ur~t~f, j-1, 2 (4.5) 

where i 1-T 
X (t, i-) = II II - 0 I 

is a fundamental matrix. Let {t*, x*}, z+ <tf’l be the position of the object (4.3). We will determined p”(t,, x*). 
Define 

trJ=o, u=4. tl’J= j, b(t)=‘/2 

4, t,<t<2 0, to<t<3 

a(l)= ( 2GfGO’ C(f) = 0, ( 2, 3GKt) 

Following the construction of Sec. 2, compute the function 

A$k(m”)) =f(Th, Tk+(, Ia( = (rk+i-Tk) min max m’2’Tx 

7. 
P P 

(4.6) 

exk(Tk) = min max z F(tk, u[‘J, u’*J)p,qs=2 
P rl r.*=f 

for pro = 1, p$ = 0, q,’ = 0, qzo = 1. Then (pk(mC2)) = 2(~k+J --r,+) (6 -TV). Next, letting TE 13, 41, we have 
extr(rj) = 2, pro = 1, p2’ = 0, qlo = 0, q2’ = 1. For 7jE [2,3] we have extr(Ti) = 1, pro = p2’ = qio = qzo = %. 

Therefore, by induction on j, proceeding from j = k to j = d, where 7d is the least of the times rj 3 2, we obtain 

h 

(py) (ml*)) = c (Tj+i-Tj) (6-Tj)eXtr(Tj) (4.7) 

If TIE [I, 21, we have extr(Tj) = -2, pro = 1, p2” = 0, qio = 1, q20 = 0. Therefore, proceeding by induction on 
jfromj=dtoj=g,whereI,isthebestofthetimes7j~tl’l=1,weobtain 

*f-I 

~s’Z’(m(2))=f+d(2J (m(2))+ z (Tj+i-rj) 11(2J1 (6-r)) (-2) (4.8) 
j=S 

If rj< tl’), then extr(Ti) = -2, pro = qlo = 1, p20 = q2’ = 0. Proceeding by induction on j from j = g to j = 1, 
we see that the function x( .) of (2.6) is defined by 

s-r 

x(r., m~‘J+m~*))=~,(/n~‘~+m~*J)= 
I: 

(Tj+l-Tj)li”‘(tt”-Tj)+ (4.9) 
j=l 

and finally 

P”Ct’, %a);= max I (m(')+m~Z))TX(U, f.)r.fx(f,, m(*)+m(tl)], 
mlfiL+ml*l 

(mis)+m(z)) Ed 

(4.10) 

If {r*, x*}, f* >&‘I, we have 
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F1r.i. 1 

(4.11) 

I c %(Tj+t-Tj) (tt_Tj), 3Cf*Clt 
j=e 

where T, is the least of the times TV 3 3. 
If {t*, x*}, t* = tl’l, we have 

p”(t., 2.) = max [ {~I’)~~~(*))~x(~ t )z.i- I . 

n,4*t+mm 

+x(f,, m@)) 1 
(2) 

. x(t., mq “pg (m(2)) (4.12) 

In this example, if we let s-+0 we get explicit expressions for X( .) in closed form, as integrals. Here we have 
preferred the discrete-sum representation of these functions, so as to illustrate the general features of the 
method through a simple, specific model. 

Once the payoff p”(t, x) has been determined as in (4.10)-(4.12), the optimal strategies {S,?, So”} can be 
constructed as described in Sec. 3. 

The control process for the object (4.3) with quality index (4.4) was simulated on a computer for initial data 
t+ = 0, x = {I, 2). The solid curve in Fig. 1 represents the motion of the object (4.3) with &;I = { ui’l. pyre}, 
r ” = ($1 qssO} (the quality index y of (4.4) is almost identical with the payoff of the game pO(t*, x*) = 4.5); 
;h”, dashedcurve represents the motion of the object with So’, S’ = {V’S’, qzs = ?h} #S,,l’ [y = 3S<p”(t*,x*)]. 

2.90 4 8 10.6 5, 

FIG. 2 
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Figure 2 shows the motion of the object for S” = {ul’l, pYl = 0.7, p,‘~ = 0.32 #SO”, SO” [Y = 13.5 >~“(t,, I+)]. 
I wish to express my gratitude to T. N. Reshetov for his help with the numerical experiments. 
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THREE-DIMENSIONAL MOTION OF A MATERIAL POINT-f 
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The two-dimensional motion of a material point over the active portion of its trajectory can be generalized 

in a naturai way to three dimensions. Corresponding to the traditional Right plane, to which the trajectory 

of motion is confined in three dimensions, we have a set of flight surfaces obtained from it by bending. The 

three-dimensional system of differential equations governing the motion of a material point splits into a 

two-dimensional system, which describes the motion in the flight surface, and a system of ordinary 

differential equations, which describes the bending of the surface. By solving this system of equations one 

can determine by analytical means how the velocity and coordinate vectors over the active portion of the 

trajectory depend on its three-dimensional distortion. The results obtained may be used to analyse the 

three-dimensional motion of a material point, to select trajectories in space and to control the three- 

dimensional motion of the centre of mass over the active portions. In some cases one can actuaily derive 

analytical expressions for solutions to boundary-value and extremai problems associated with the 

three-dimensional motion of a material point. 

1. THE BASIS TRIHEDRON AND THE DIFFERENTIAL EQUATIONS OF ITS ROTATION 

WE SHALL be concerned with the three-dimensional motion of a material point over the active 
portion of its trajectory about a single attractive centre. A physical example of such a motion is that 

t Prikl. Mat. Mekh. Vol. 56, No. 2, pp. 202-211, 1992. 


